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Abstract 

Tillman et al. (2017) used evidence-accumulation modeling to ascertain the effects of a 

conversation (either with a passenger or on a hands-free cell phone) on a drivers’ mental 

workload. They found that a concurrent conversation increased the response threshold but did 

not alter the rate of evidence accumulation.  However, this earlier research collapsed across 

speaking and listening components of a natural conversation, potentially masking any dynamic 

fluctuations associated with this dual-task combination. In the present study, a unique 

implementation of the Detection Response Task was used to simultaneously measure the 

demands on the driver and the non-driver when they were speaking or when they were 

listening.  We found that the natural ebb and flow of a conversation altered both the rate of 

evidence accumulation and the response threshold for drivers and non-drivers alike. The 

dynamic fluctuations in cognitive workload observed with this novel method illustrate how 

quickly the parameters of cognition are altered by real-time task demands.   

 

 

 

 

 

Public Significance Statement:  This study presents a novel method for measuring and modeling 

the dynamic fluctuation in workload of in-person and cell-phone conversations of both the driver 
and the non-driver.  Both interlocutors exerted more mental effort while speaking than listening 

and the effects of the conversation were additive with the driving task. Our modeling suggests 
that the increased workload associated with conversing whilst driving is due to a decrease in rate 
of evidence accumulation and an increase in response caution.
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The real-world tasks of driving an automobile and engaging in a conversation with an 

interlocutor are continuous, and each task results in dynamic fluctuations in the effort required to 

maintain acceptable levels of performance.  Driving performance fluctuates with the difficulty of 

the driving task (Teh, Jamson, Carsten, & Jamson, 2014).  The demands of a conversation 

fluctuate between speech comprehension, which is easier, and speech production, which is 

harder, (e.g., Lee, Cerisano, Humphreys, & Watter, 2017, but see Kubose et al., 2006).  When 

driving and conversing are performed concurrently, they compete for limited capacity attention 

(Kahneman, 1973).  For example, driving performance degrades as the difficulty and complexity 

of the conversation increases (McKnight, & McKnight, 1993; Nunes & Recarte, 2002).  

Similarly, a conversation degrades as the demands of driving increase (Nunes & Recarte, 2002; 

Drews, Pasupathi, & Strayer, 2008). 

Tillman, Strayer, Eidels, and Heathcote (2017) measured the cognitive workload of a 

dyad engaged in a natural conversation. They contrasted an in-person conversation (i.e., between 

a driver and a passenger in a vehicle) with a hands-free cell phone conversation in which the 

driver and non-driver were in different physical locations. To obtain measures of workload, they 

implemented a detection response task (DRT; International Standards Organization, ISO 17488, 

2016), which has been shown to be sensitive to cognitive workload (e.g., Castro, Cooper, & 

Strayer, 2016; Cooper, Castro, & Strayer, 2016). every 3-5 seconds, ―yoked‖ DRT devices (one 

fitted to the driver and one fitted to the non-driver) flashed a light in the peripheral field of view 

of the left eye of each member of the conversational dyad. Both the driver and non-driver 

responded separately to the onset of the light by pressing a microswitch attached to their finger.  

Tillman et al., (2017) found that DRT responses were faster when the driver was not 

conversing (i.e., driving only) than when they were also conversing in person or over a cell 
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phone.  The response time (RT) for the latter conditions did not differ, in line with previous 

research (e.g., Nunes & Recarte, 2002; Strayer & Johnston, 2001; Strayer, Drews, & Johnston, 

2003).  The non-driver’s responses were faster than the driver and, like with the driver, were 

equivalent for passenger and cell phone conversations. The fact that RT was elevated for the 

driver suggests that the driving task and the conversation task compete for limited attentional 

resources.  Tillman et al., (2017) modeled the driver’s DRT performance using an evidence-

accumulation model that enables measurement of the mean rate of evidence accumulation (i.e., 

drift rate), the threshold amount of evidence required to trigger a response (i.e., response 

caution), and non-decision time (i.e., the time to complete perceptual encoding and motor 

response processes) (Brown & Heathcote, 2008; Ratcliff & McKoon, 2008). A single-bound 

diffusion model (Heathcote, 2004; Logan, Van Zandt, Verbruggen, & Wagenmakers, 2014) was 

fitted to the driver’s DRT responses and found that the workload effect was due to an increase in 

a participant’s response thresholds.  There was scant evidence that the rate of evidence 

accumulation for the driver changed with the addition of the conversation task. 

This pattern is surprising because the driving and conversation tasks seem to compete for 

limited attentional resources (e.g., Kahneman, 1973), a pattern that should theoretically impact 

the rate of evidence accumulation.  Under this logic, the rate of evidence accumulation should 

decrease when a participant divides their attention between two attention-demanding tasks, such 

as the decreased performance in visual search behavior, visual detection, and response selection 

capacities while driving and talking demonstrated by Nunes and Recartes (2002).   

As evidence-accumulation modeling originates from the decision-making literature (e.g., 

Ratcliff & Rouder, 1998), the theoretical framework of this approach suggests two types of 

mental processes. Bargh and Chartrand (1999) listed the examples of these processes as 
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―conscious—nonconscious, controlled—automatic, explicit—implicit, systematic—heuristic‖, 

but one refers to willfully regulating behavior and the other seems to be less controlled by the 

awareness of the individual. In this framework, Tillman et al., (2017) suggest that only the 

certainty, or cautiousness, with which we make a response matters in terms of cognitive 

workload.  

Several of the same decision-making frameworks have been applied to the mechanisms 

of multitasking limitations, including limited-capacity attention (e.g., Kahneman, 1973; Navon & 

Gopher, 1979). However, multitasking requires allocating attention among two or more goals 

(e.g., Braver, 2012; Wickens & McCarley, 2019). Researchers argue that this process involves a 

fundamentally different mechanism than maintaining the effort to accomplish one goal (e.g., 

Howard, Evans, Innes, Brown, & Eidels, 2020; Norman & Shallice, 1986). In multitasking, 

attention’s limited processing capacity may account for less than allocating attention with regard 

to performance changes, thereby creating a dual-process model of performance with the mean 

rate of evidence accumulation (i.e., drift rate) as one process and the threshold amount of 

evidence required to trigger a response (i.e., response caution or bias) as the other related 

process. 

However, an important limitation of Tillman et al., (2017) is that they averaged over the 

speech comprehension and speech production components of the conversation, possibly 

weakening any effects of workload on the rate of evidence accumulation.  As noted above, 

speech comprehension and production place different demands on an interlocutor, particularly if 

they are concurrently driving an automobile (e.g., Strayer et al., 2015). In the conversational 

dyad, there should be a reciprocal pattern of workload such that workload is higher for the driver 

when they are speaking than when they are listening.  By contrast, the workload of the non-
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driver should be higher when the driver is listening (and the non-driver is talking) and lower 

when the driver is talking (and the non-driver is listening). Therefore, these effects of speech 

should not be collapsed across due to their differential impact on workload. The current study 

uses the dual-DRT configuration developed by Tillman et al., (2017) to measure and model the 

performance of both the speaking and listening of the driver and non-driver as they engage in a 

naturalistic conversation in-person or remotely over a hands-free cell phone. To discriminate 

between fluctuations in speaking and listening, microphones are attached to each of the DRT 

devices (i.e., one for the driver and one for the non-driver) and the audio is used to trigger a code 

for who is speaking and who is listening.   

Behaviorally, we predict that DRT RT will be longer, and the probability of responding 

(i.e., hit rate) lower, for the driver than for the non-driver, reflecting the added load associated 

with driving.  We also predict that RT will be higher and hit rate lower when the participant is 

speaking than when they are listening.  Moreover, we predict that the pattern of DRT data for 

the driver and non-driver will mirror one another. 

 Unlike Tillman et al., (2017), who modeled only the driver’s DRT performance 

collapsed over speaking and listening using the single-bound diffusion model, we separately 

modeled cell phone and passenger conversations for the passenger. Tillman et al. focused only 

on response times and did not take into account failures to respond to the DRT stimulus 

(omissions) as they occurred at a low rate when in the conversation conditions (~4%) and not at 

all in their condition with no conversation. In the experiment reported here omissions occurred 

at a higher rate and differed more markedly across conditions, suggesting that they could not be 

ignored. Hence, we used Damaso et al.’s, (2021) Linear Ballistic Accumulator with Omissions 

(LBAO) model to provide a simultaneous account of both RT and omissions.  
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Like the diffusion model, the LBAO has parameters for response caution (B), the mean 

rate of evidence accumulation (v), and perceptual encoding and motor response production time 

(t0). We predict that the rate of evidence accumulation and the threshold for responding to the 

DRT will be modulated by the dynamic fluctuations in workload associated with the 

conversation, so conversational turn-taking will result in shifts in both threshold and rate 

parameters. Additionally, the LBAO has a parameter for trial-to-trial variability in drift rate (sv), 

which follows a normal distribution. When rate variability causes a sufficiently small rate to be 

sampled an omission can occur because the threshold amount of evidence is not accumulated 

before the maximum time allowed for a DRT response (3 s). Ratcliff and Strayer (2014) used the 

same mechanism in the diffusion model to account for omissions, but this model could not 

distinguish between rates and threshold and had no closed-form likelihood, making it difficult to 

fit. The LBAO overcomes both of these limitations, enabling an understanding of the effects of 

dynamic fluctuations of cognitive workload on omissions while also disentangling rate and 

threshold effects. We predict that manipulations that reduce capacity will also increase 

omissions by making small rates more likely.  
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Method 

Transparency and Openness 

Data 

 The data for the discussed studies are available with the link posted here and in the 

Author Note: https://osf.io/4a9xb/ 

Analytic methods 

The analytic code needed to reproduce analyses is available and the link to access this 

information is provided in the Author Note with behavioral analyses within Final_Analysis 

cop.zip and modeling analyses within LBAO_Modeling_ConvoDrive copy.zip. 

Materials 

 Certain materials, such as the DS-600 DriveSafety™ driving simulator, the driving 

scenario, and the Detection Response Task devices (ISO 17488, 2016) are not available. 

However, DRT devices and standards can be purchased from https://redscientific.com/ and the 

International Organization for Standardization 17488. Methods for the LBAO can be found in 

Damaso et al. (2021).  

Participants 

Forty-four participants (23 Female, age: M = 21.1, SD = 3.4) were recruited in 22 dyads 

from University of Utah undergraduate psychology courses. Information on race, ethnicity, or 

socioeconomic status was not collected. Participants received course credit as compensation for 

completion of the one-hour study. Dyads were required to know each other in order to facilitate 

naturalistic conversation.  

Materials  

A DS-600 DriveSafety™ driving simulator provided the experience of driving an 
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automatic shifting compact passenger sedan.  DriveSafety software was utilized to program a 

19-mile driving scenario, which included two- and three-lane divided highways with speed 

limits between 55 and 65 miles per hour and moderate traffic. The other simulated vehicles 

changed speed and lanes to create irregular-flow traffic (Drews, Pasupathi, & Strayer, 2008), 

which simulated realistic traffic. Participants drove for approximately 15-minutes in each block. 

The driving environment, the familiar dyads, and the naturalistic conversation topics were all 

designed to simulate natural conversations while driving on a highway. 

 Separate vibrotactile Detection Response Task devices (ISO 17488, 2016), one for the 

driver and the other for the non-driver, were used throughout the experiment. Following ISO 

17488 (2016) guidelines, a small vibrating motor was attached to each of the participants’ left 

collarbone at the base of the neck. The DRT onset occurred pseudo-randomly every 3-5 seconds, 

and participants responded with a small button attached to their right thumb. The vibration 

stopped when the participant pressed the button or after one second had elapsed. A dedicated 

microprocessor recorded millisecond-accurate responses. Microphones were utilized to 

determine whether a DRT stimulus occurred while the driver or non-driver was speaking, or 

during silence. 

Table 1.  Experimental Design for a 2 between (Condition) X 2 within (Role) X 3 within 
(Speaker) Repeated Measures Linear Mixed-Effects Model. 

Condition  Role Speaker 

Randomly Assigned 
(between dyads) 

Within Participant 
(2x15-minute blocks) 

Within Participant 
(unbalanced time) 

Cell Phone 

Driver 

None 

Driver 

Other 

Other 

None 

Driver 

Other 

In Person Driver 
None 

Driver 
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Other 

Other 

None 

Driver 

Other 

  
Procedure  

Dyads were randomly assigned to either the cell phone or passenger conversation 

condition and participants were randomly assigned to the driver or the other role first. Both 

participants in the dyad completed the driving and non-driving roles, but they only participated 

in the cell phone or passenger conversation condition (i.e., in-person vs. cell phone conditions 

was a between-subjects factor, see Table 1). Participants first performed a 5-minute practice 

block where one participant sat in the driver’s seat and the other participant either sat in the 

passenger seat or at a remote location. Both participants responded to the DRT for the 5 minutes 

and the participant in the driver’s seat drove the vehicle. Participants then switched roles and the 

procedure was repeated. After the practice drives, participants selected 10 topics from a list of 

20 conversation starters listed by Psychology Today (Barreca, 2017; Prompts are listed in 

Appendix A). Participants held a conversation for 15 minutes while driving and either sitting in 

the passenger seat or at the remote location using a hands-free cell phone. Participants then 

switched places and completed another 15 minutes of conversation. 

Measures. DRT RT and Hit Rate (HR) was recorded for both participants.  The DRT 

stimulus presentation to the driver and the non-driver were independent. Following ISO 

guidelines (ISO 17488, 2016), anticipatory responses shorter than 100 milliseconds (0.09%) 

were excluded from statistical analysis. Driving performance measures included speed 

variability, Root Mean Squared Error (RMSE) from the speed limit, and lateral lane deviation.  

Results 

 Differences in conditions between having a conversation with a passenger and having a 
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conversation with a remote participant via a hands-free cell phone were tested in R (R 

Development Core Team, 2018). The lme4 package (Bates, Maechler, Bolker, & Walker, 2015) 

was used to create linear mixed-effects models (LMMs) with fixed effects of condition (2: cell 

phone vs. in-person), the participant role (2: driver vs. non-driver), and speaking demands (3: no 

talking, listening, and speaking) fully crossed. We report Type II Wald chi-square tests of 

differences in RT, HR, and RMSE across conditions; 95% confidence intervals are reported in 

square brackets. In all cases likelihood ratio tests selected random slopes for the effect of drive 

on participants and random intercepts for participants to account for the experimental design of 

two drives per participant. Additionally, we included block as a covariate to account for any 

effects of learning or fatigue.   

Behavioral Measures 

RT 

Statistical analyses were performed on log-transformed RTs but are not transformed in 

Figure 1 for clarity.  Conversing increased RT over no talking by 39 ms [23, 54], 2(2) = 850.67, 

p < .001 and drivers responded more slowly than non-drivers by 89 ms [75, 102], 2(2) = 8.13, p 

= .004. RT for participants in the cell phone condition did not differ significantly from when 

participants conversed in person, 2(1) = 2.76, p = 0.12.   

Speaker interacted with participant role, 2(2) = 356.96, p < .001, and with condition 

2(2) = 37.81, p < .001. In the in-person condition, the increase in RT from no talking to the 

driver speaking was smaller for the non-driver (27 ms, 95% CI [23, 31]) than for the driver (102 

ms, [98, 106]).   By contrast, the increase in RT between no talking and the passenger speaking 

for the non-driver (103 ms, [99, 107]) was greater than for the driver (14 ms, [4, 23]).  In the cell 

phone condition, the increase in RT from no talking to the driver speaking was smaller for the 
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non-driver (27 ms, [23, 31]) than for the driver (48 ms, [38, 60]).   By contrast, the increase in 

RT between no talking and the passenger speaking for the non-driver (102 ms, [99, 107]) was 

greater than for the driver (71 ms, [4, 23]).  

A three-way interaction, 2(2) = 9.33, p = .009, was driven by the differences in RT 

between the cell phone and in-person conditions for the driver when they were listening to the 

non-driver speak.  This suggests that the driver found it more difficult to listen to the other 

talking in a cell phone conversation than to an in-person conversation (see Figure 1).  

 

Figure 1. Response times of the driver and other participant during a 15-minute drive, 

according to who was talking and who was listening. 95% Confidence Intervals were calculated 
utilizing the Cousineau-Morey method for repeated-measures designs (Cousineau, 2005; Morey, 

2008; Baguley, 2012). 
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Hit Rate  

A binomial LMM with a probit link was fit by maximum likelihood using Laplace 

Approximation (see Figure 2 for means and 95% CIs). Conversing decreased HR over no talking 

by 4.21% [3.21, 6.54], 2(2) = 850.67, p < .001, and drivers responded less often than non-

drivers by 1.32% [.75, 1.52], 2(2) = 8.13, p = .004. The effect of condition (i.e., cell phone vs. 

in-person) on HR was significant, 2(1) = 10.39, p = .001.  

The effect of condition interacted with who was responding to the DRT, 2(1) = 153.04, 

p < .001. Who was speaking also interacted with who responded to the DRT, 2(1) = 39.77, p < 

.001. The speaker was part of a significant interaction with the responder, 2(1) = 72.22, p < 

.001 (see Figure 2). As with the RT data, this suggests that the driver found it more difficult to 

listen to a cell phone conversation than to an in-person conversation. 
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Figure 2. Hit Rate of the driver and other participant during a 15-minute drive, according to 
who was talking and who was listening. 95% Confidence Intervals were calculated utilizing the 
Cousineau-Morey method for repeated-measures designs (Cousineau, 2005; Morey, 2008; 

Baguley, 2012). 

 

Driving Performance  

Drivers exhibited greater lateral steering deviation when talking (M = .37 m, [.16, .58]) 

than when listening (M = .30 m, [.17, .43], 2(1) = 73.23, p < .001). Additionally, drivers in the 

cell phone condition produced slightly smaller steering deviation (M = .31 m, [.17, .45]) than 

drivers in the passenger condition (M = .34 m, [.16, .52]), 2(1) = 7.32, p = .04.  A similar main 

effect was found for compliance with the speed limit (RMSE) between no talking, listening, and 

speaking conditions 2(1) = 11.45, p = .021. However, the difference between speaking and 
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listening conditions did not achieve significance, 2(1) = 1.45, p = .09. Finally, participants 

drove more slowly overall when talking on a cell phone (M = 62.06 mph, [59.80, 64.32]) than 

when conversing with a passenger (M = 64.2 mph, [62.30, 66.10]) 2(1) = 9.45, p = .03. Table 2 

reports individual condition means and standard deviations. 

Table 2.  Means and Standard Deviations of Driving Performance for the Cell Phone and In 
Person conditions when nobody is speaking (i.e., None), when the driver is speaking (i.e., 

Driver), and when the other participant is speaking (i.e., Other). 

 In Person  Cell Phone 

 

 Speaker    Speaker  

None Driver Other  None Driver Other 

M (CI) M (CI) M (CI)  M (CI) M (CI) M (CI) 

Steering Deviation 
(RMSE) 

0.30 (.13) 0.37 (.21) .31 (.18) 
 

.28 (.12) .34 (.18) .31 (.14) 

Speed Variability 

(RMSE) 
2.5 (1.2) 3.5 (1.4) 2.9 (1.1)  2.1 (.81) 3.1 (1.0) 2.4 (1.2) 

Average Speed 
(mph) 

66.3 (5) 63.2 (6) 64.3 (5)  64.3 (4) 60.5 (5) 61.4 (5) 

Note. RMSE = root mean squared error; mph = miles per hour. 
 

Modeling Approach 

Damaso et al., (2021) defined two types of omissions that occur because of drift rate 

variability. ―Intrinsic‖ omissions occur because the sampled rate for a trial can be negative, and 

so threshold will never be reached. ―Design‖ omissions occur when a positive drift rate is 

sampled that is too small to reach the threshold in the 3 s response window. Drift rates in the 

LBA vary according to a normal distribution, and so the probability of an intrinsic omission in 

speaking-demand condition i is       (     ⁄ ), where  ( ) is the integral of a normal 

distribution with mean x and a unit standard deviation from    to zero, and vi and sv i are the 

rate distribution’s mean and standard deviation. Design omissions speaking-demand condition i 

occur with probability        (                  ), where F() is the cumulative 
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distribution function for an LBA accumulator (see Brown & Heathcote, 2008), Ai is the range of 

trial-to-trial variability in the starting point of accumulation, and bi the threshold in condition i. 

Combining the two types the total omission probability is           (      )    , where the 

subscript T indicates that the combined value is a function of task-related factors as it depends on 

the same parameters that determine DRT responses. Note that no extra parameters need to be 

estimated to produce predictions about task-related omissions.  

Damaso et al., (2021) also included an extra parameter, pC, to allow for ―contaminant‖ 

omissions with a different origin to task-related omissions. This idea was drawn from Castro et 

al. (2019), who attributed such omissions to a failure to encode the stimulus. They estimated 

different values of pC to account for increased DRT omissions when participants performed a 

secondary task (counting backward). By itself this approach is essentially only descriptive as 

there is no relationship between response and omission processes. We preferred Damaso et al.’s 

approach as it links the two and so is naturally able to account for correlations between these two 

performance measures. Damaso et al. included both task-related and contaminant omissions 

because they were requried to account for a few participants with high overall omission rates but 

treated their probability as an individual difference variable that does not change with secondary-

task workload.  

We made the same assumption about contaminant probability with respect to speaking-

demand conditions, so only one extra parameter is estimated, and the overall probability of 

omissions in condition i is          (     )   . Hence, any differences in omission rates 

between conditions are entirely accounted for by the parameters of the evidence accumulation 

process, and so we focus on these parameters in our analysis. Like Damaso et al. (2021), we 
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found that contaminant omissions varied widely over individuals, being less than 5% for most 

but up to almost 15% for a few participants. 

Modeling Results  

 The DMC software (Heathcote et al., 2018) was used to fit models in a Bayesian manner 

separately to each combination of role (driver vs. passenger) and speaker-type condition (in 

person vs. cell phone). In each case we fit 8 models that allowed various combinations of 

thresholds (B) rates (v), rate standard deviations (sv), and non-decision time (t0), were allowed to 

differ with the three speaking-demand conditions (none, driver, other). To make models that 

allowed threshold to vary with speaking-demand condition identifiable the threshold in the no-

talking condition was fixed to one. Similarly, for models that assumed the same threshold for all 

speaking-demand conditions its value was set at one.    

In every case, the best model according to the DIC model selection criterion included an 

effect of speaking-demand condition on the threshold parameter and both drift rate parameters 

but dropped an effect on non-decision time (see Table 3). This model was used in all further 

analyses.  

 

Table 3.  The difference between Deviance Information Criterion (smaller values indicate a 
better tradeoff between goodness-of-fit and model complexity) relative to the best model (i.e., the 

DIC value for the best model in each row is subtracted from the values for all models in the row, 
so the best model has an entry of zero). The models either allowed thresholds (B), rates (v), rate 
standard deviations (sv) or non-decision time (t0) to vary over the three speaking-demand 

conditions. Models were fit to each condition and pair member role separately.   

Driver with Passenger 
Bvsv Bvt0sv vt0sv Bv Bvt0 vt0 vsv v 
0 126 204 296 418 600 668 1326 

Passenger with Driver 
Bvsv Bvt0sv Bv vt0sv Bvt0 vt0 vsv v 

0 84 298 331 410 557 669 1329 

Driver with Cell Phone 
Bvsv Bvt0sv vt0sv vsv Bvt0 Bv vt0 v 
0 4 111 509 855 1016 1225 1729 

Non-driver with Cell Phone 
Bvsv Bvt0sv Bv vt0sv Bvt0 vt0 vsv v 
0 134 237 272 428 573 676 1313 



18 
 

Note. For a discussion on the Deviance Information Criterion, see Spiegelhalter, Best, Carlin, & 
Van Der Linde, (2002). 

 
Parameter Tests 

We report parameter estimates from the best model as posterior medians with 95% 

credible intervals (in square brackets) and p value indicating the fixed-effect probability that one 

parameter is greater than another with small p values supporting a difference.  

Driver Responses with a Passenger. The response threshold (B) remained fixed at 1 

while there was silence in order to make the model identifiable. We found that the response 

threshold (B) was larger for talking than listening (.74 [.68, .80] vs .58 [.52, .63], respectively, p 

< .001). The mean rate (v) decreased from silence to listening (3.52 [3.44, 3.61] vs 2.41 [2.24, 

2.60], respectively, p < .001) and from silence to talking (3.5 [3.44, 3.61] vs 2.49 [2.34, 2.66], 

respectively, p < .001). There was little evidence for a difference in mean rate (v) between 

listening and talking (2.41 [2.40,2.60] vs 2.49 [2.33, 2.66], respectively, p = .21). 

Passenger Responses with a Driver. With the silent responses fixed at 1, threshold (B) 

increased from listening to talking (.58 [.52, .63] vs .73 [.68, .80], respectively, p < .001). The 

mean rate (v) decreased from silence to listening (3.52 [3.44, 3.61] vs 2.41 [2.24, 2.60], 

respectively, p < .001) and from silence to talking (3.5 [3.44, 3.61] vs 2.49 [2.34, 2.66], 

respectively, p < .001). There was little evidence for a difference in mean rate (v) between 

listening and talking (2.41 [2.24,2.60] vs 2.49 [2.34, 2.65], respectively, p = .22). 

Driver Responses with a Cell Phone. Again, the response threshold (B) remained fixed 

at 1 while there was silence in order to make the model identifiable. There was no evidence to 

suggest that listening had a higher threshold than talking (1.85 [1.60, 2.12] vs 1.82 [1.55, 2.14], 

respectively, p = .44). The mean rate (v) increased from silence to listening (4.83 [4.66, 5.01] vs 

6.33 [5.65, 7.03], respectively, p < .001) and talking (4.83 [4.66, 5.01] vs 5.93 [5.28, 6.63], 
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respectively, p < .001). There was little evidence for a difference between listening and talking 

(6.33 [5.65, 7.03] vs 5.93 [5.28, 6.63], respectively, p = .19) 

 Non-Driver with a Cell Phone. With the silent responses fixed at 1, threshold (B) 

increased from listening to talking (.65 [.55, .74] vs .83 [.72, .97], respectively, p < .01). The 

mean rate (v) decreased from silence to listening (3.49 [3.40, 3.59] vs 2.40 [2.20, 2.61], 

respectively, p < .001) and talking (3.49 [3.40, 3.59] vs 2.50 [2.26, 2.77], respectively, p < .001). 

There was little evidence for a difference between listening and talking ([2.20, 2.61] vs 2.50, 

[2.64, 2.77], respectively, p = .21). 

Contributions to Workload 

Workload is considered a multi-dimensional concept that one representative measure will 

fail to capture (Gopher & Donchin, 1986). However, several mechanisms of performance and 

effort requirements can be discussed within the context of goal-directed behavior.  For example, 

the process of changes in workload measurements can be consciously mediated, with 

participants slowing in their responses or failing to respond because they deliberately respond 

more cautiously with higher workloads in the primary task. If the driver maintains separate 

resource pools for the primary and secondary tasks, like in some resource theories of attention 

(e.g., Wickens, 2008), then a strategic increase in response certainty (i.e., caution) would be 

responsible for slower DRT responses. If the tasks required separate resources, dual-task costs 

would not be observed at all. In an applied setting, a driver could prioritize reacting to traffic 

changes over DRT responses when they perceive increased driving difficulty. Previous research 

demonstrates a strong correlation between the DRT and self-report measures of subjective 

workload (Strayer et al. 2013), such as the NASA Task Load Index (Hart and Staveland 1988). 
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However, reductions in a unitary pool of resource may occur due to both tasks in a more 

traditional theory of attention (Kahneman, 1973), especially when there is an implicit task 

priority. In this case, the primary task would receive the resource necessary to complete the task 

to the operator’s perceived ability and whatever is left would be allocated to the second task. If 

the resources allocated did not match the required workload, processing of that task would slow. 

In our modeling terms, this would be a slowing of the rate of evidence accumulation toward a 

response. 

To our knowledge, this is the first study to measure and model the natural and dynamic 

ebb and flow of mental workload of both interlocutors in a conversational dyad, as most studies 

block the experimental conditions and only obtain measurements from one participant.  We 

observed a reciprocal tradeoff in workload for the conversational dyad such that when one 

participant was speaking their workload, as inferred from the DRT, was higher than when they 

were listening.  An inverse pattern was observed for the other participant (e.g., higher workload 

when the other participant was listening than when the other participant was talking).  Moreover, 

the driving task showed an additive relationship with the conversation (i.e., higher for the driver 

than the non-driver), suggesting that the driving and the conversation tasks compete for the same 

limited capacity resources.  The data help to explain why a conversation can lead to driver-

restricted attention (e.g., Regan, Hallett and Cordon, 2011). This impairment is most apparent 

with cell phone conversations due to the compensatory factors associated with passenger 

conversations (e.g., Drews, Pasupathi, and Strayer, 2008). 

Our model selection indicates that differences in threshold and rate (both mean and 

variability) play a significant role in explaining the variations in workload. To quantify their 

relative importance, we systematically held constant the effect of each parameter by setting the 
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parameter to its average value across conditions while leaving the other parameters at their 

estimated values and simulated DRT data to determine the reduction in the model’s ability to 

account for the workload differences (Strickland, Loft, Remington & Heathcote, 2018).  The 

reduction in variance accounted for was computed using the following equation: 

                     (  (
                                  

          
)    ) 

 

Driver Responses with a Passenger. We found that for drivers with a passenger, RT 

slowed 79 [43, 115] milliseconds when talking compared to listening, but that this effect 

disappeared in the simulated data when the threshold (B) was fixed at its average (5 [-169, 179] 

ms). When mean rate (v) was fixed, the effect decreased by 21 milliseconds to 59 [-43, 161] 

milliseconds. With fixed B, the model lost 93.67% of the effect while with fixed mean v, the 

model lost 26.58% of the effect.  

Passenger Responses with a Driver. We found that the effect of talking compared to 

listening (79 [43, 115] ms) disappeared for the simulated data when the threshold (B) was fixed 

at its average (-58 [-153, 37] ms)). When mean rate (v) was held fixed, the effect was hardly 

reduced (75 [12, 137] ms). The effect of removing B accounted for an increase in the effect of 

73% while removing mean rate (v) decreased 5% of the effect. 

Driver Responses with a Cell Phone. We found that for drivers talking on a cell phone, 

RT slowed 74 [33, 115] milliseconds when talking compared to silence, but that this effect 

disappeared for the simulated data when the threshold (B) was fixed at its average (5 [-169, 179] 

ms). When mean rate (v) was fixed, the effect decreased by 21 milliseconds to 59 [-43, 161] 

milliseconds. With fixed B, the model lost 85.64% of the effect while with fixed mean v, the 

model lost 26.58% of the effect.  
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Non-Driver with a Cell Phone. We found that for drivers talking on a cell phone, RT 

slowed 93 [45, 141] milliseconds when talking compared to silence, but that this effect 

disappeared for the simulated data when the threshold (B) was fixed at its average (15 [-121, 

149] ms). When mean rate (v) was fixed, the effect decreased by 11 milliseconds to 82 [-13, 

181] milliseconds. With fixed B, the model lost 83.87% of the effect while with fixed mean v, 

the model lost 11.83% of the effect.  

Discussion 

 We found that the workload of the driver and non-driver traded off in a naturalistic 

conversation. Overall, the passenger’s workload was lower than that of the driver. The fact that 

RT was elevated for the driver suggests that the driving task and the conversation task competed 

for limited attentional resources. The reciprocal pattern observed when the dyad was conversing 

(e.g., higher for the driver and lower for the non-driver when the driver was speaking than when 

the driver was listening) demonstrates the complexity of measuring the cognitive workload of 

conversations while driving.  

 The DRT data were modeled using Linear Ballistic Accumulation with occasional 

response Omissions (LBAO).  According to the Deviance Information Criterion, the model 

omitting t0 (i.e., Bvsv) best fit the data, showing that the perceptual encoding and motor-response 

parameters were not necessary to differentiate between the experimental conditions. The primary 

factor differentiating a driver talking compared to not talking was the threshold to a response 

(the model with fixed v accounting for 93% of the effect when with a passenger and 85% when 

talking on a cell phone), with the evidence accumulation rate (i.e., the model with fixed B) 

accounting for about 26% of the effect. 

Importantly, the LBAO modeling shows that the division of attention between driving 
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and conversing reduces the rate of evidence accumulation.  The pattern varies slightly for in-

person and cell phone conversations, but in both cases the workload differences are the result of 

changes in both the response threshold and the rate of evidence accumulation.  This pattern 

differs from that of Tillman et al., (2017), in which dual-task costs were attributed solely to 

changes in response threshold. The current data suggests that aggregating over listening and 

speaking may have masked any effects of workload on the rate of evidence accumulation. 

It is worth considering three possible outcomes of the LBAO modeling and how they 

might inform our theoretical understanding of dual-task performance.  One possibility is that the 

addition of a secondary task increases the response threshold, but leaves the rate of evidence 

unchanged (e.g., Tillman et al., 2017). Essentially, dual-task performance is slowed under this 

scenario because of response caution. Another possibility is that the addition of a secondary task 

decreases the rate of evidence accumulation but leaves the response threshold unchanged. 

Essentially, dual-task performance is slowed under this scenario because the bandwidth of 

information processing for each task has been reduced by a finite resource allocation policy 

(e.g., Kahneman, 1973).  Finally, the addition of a secondary task could increase the response 

threshold and decrease the rate of evidence accumulation. This latter possibility is what was 

observed in the current study.  Dual-task performance was altered because of response caution 

and a splitting of the information processing bandwidth. 

Previous research can account for the presence of these parameters. For example, Drews, 

Pasupathi, & Strayer, (2008), demonstrated that passengers could modify their behavior when 

perceiving an especially high workload driving environment. This could be a source of 

differences in model parameters between the non-drivers, where a majority of the conversational 

differences are captured by prioritization decisions (i.e., the threshold parameter), and the 
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drivers, where a larger proportion of the effect is accounted for by limited capacity (i.e., the rate 

parameter).  

Our research was not sufficiently powered to examine differences in the nature of the 

conversation (e.g., neutral vs emotional), the degree of familiarity of the dyads, or individual 

differences in capacity.  We posit that future research using the dual-DRT methodology will 

help to shed light on how workload is modulated by these factors, as literature suggests that they 

have an impact on aggregate performance (e.g., Hickman, Soccolich, Fitch, & Hanowski, 2015) 

Other limitations include an inability with the current study’s design to meaningfully 

address questions of individual differences within dyad interactions. Although the study 

recruitment approach helped to ensure that all the participants previously knew the other 

member of the dyad, the degree of familiarity was not specified. Additionally, some dyads were 

mixed gender while others were not. Although practically interesting, the current study would be 

underpowered in addressing these factors’ impacts on cognitive workload. Previous research has 

also demonstrated that the emotional valence of conversation can influence various factors of 

performance (e.g., Hickman, Soccolich, Fitch, & Hanowski, 2015; McKnight, & McKnight, 

1993; Nunes & Recarte, 2002). Although we could not control for the strength of this 

association, all dyads received the same discussion prompts and each member was given a turn 

to lead the discussion of the prompt. 

 The DRT method used herein to explore the dynamic ebb and flow of workload in a 

conversational dyad illustrates the potential for using this method for examining workload across 

two or more individuals working as a team in other operational environments.   Based on the 2-

DRT case used in the current research, having n-DRT units deployed across a team of 

individuals may provide insights into the flow of workload across the team as they perform a 
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complex task.  Future research should consider this possibility.
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Author Note 
 

The study design, hypotheses, and analytic plan for the current manuscript were not 
preregistered. The analytic code needed to reproduce the behavioral analyses is available at 

the following link: https://osf.io/4a9xb/ . Additionally, the modeling software necessary to 
fit the LBAO model to the data utilized in this study is also available within the 
LBAO_Modeling_ConvoDrive copy.zip file.  
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Appendix A 

Conversation Question Prompts: 

1. What was the worst school day you ever had? 

2. What was the best school day you ever had? 

3. What was the worst meal you ever cooked? 

4. What was the best meal you ever cooked? 

5. What was the worst outfit you ever wore? 

6. What was the best outfit you ever wore? 

7. What is the worst song that you love? 

8. What is the song that you think is the best? 

9. What is the worst photograph anyone ever took of you? 

10. What is the best photograph anyone ever took of you? 
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